The Atmosphere

- This is our protective blanket of gasses.

- 78% Nitrogen (N_2)
- 21% Oxygen (O_2)
- Proportionally small amounts of carbon dioxide, water vapor and other trace substances
Atmospheric Gases

Clean, dry air is a mixture of molecules of three important gases.

<table>
<thead>
<tr>
<th>Clean, dry air</th>
<th>Percent</th>
<th>Chemical</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen gas</td>
<td>78.08%</td>
<td>N_2</td>
<td>$\equiv N$</td>
</tr>
<tr>
<td>Oxygen gas</td>
<td>20.95%</td>
<td>O_2</td>
<td>$O=O$</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>0.035%</td>
<td>CO_2</td>
<td>$O=C=O$</td>
</tr>
</tbody>
</table>

aThe remaining 0.94 percent is composed of inert gases, which have no biological importance.
The Atmosphere - Layers

- **Troposphere**
 - Layer in which we live
 - Most weather occurs here
 - Clouds form here contributing to the albedo effect
 - 90% of the gases are here
 - 78% nitrogen, 21% oxygen
 - Temperature decreases with altitude until the next layer is reached
The Atmosphere - Layers

- **Stratosphere**
 - 6-31 miles in altitude
 - Calm
 - Air traffic due to lack of weather
 - Temperature increases with altitude
 - Ozone layer (oxygen is converted to O_3 by lightning and/or sunlight)
 - 99% of ultraviolet radiation (especially UV-B) is absorbed by the stratosphere
Ozone Layer

• Present in the stratosphere
• Absorbs UV radiation (99%)
• Comprised of a high concentration of O_3 molecules.
 – Oxygen exists in 3 forms in the atmosphere: O_3, O_2, and O.
 – Ozone is being continuously formed and decomposed due to the energy from UV rays.

$$O_3 + \text{UV} \rightarrow O_2 + O \rightarrow O_3$$
Ozone

- Ozone is O_3
- Naturally occurring in the stratosphere.
- The absorption of energy from UV rays causes the formation and deformation of O_3.
- Without anthropogenic inputs the system is in equilibrium

$$O_3 \leftrightarrow O_2 + O$$
Ozone

Stratospheric Ozone
• Naturally occurring.
• Beneficial to life on Earth
• Creates a protective layer that absorbs 99% of UV radiation in sunlight

Tropospheric Ozone
• Also called ground-level ozone
• Anthropogenic
• Does NOT migrate to the atmosphere
• Secondary Air pollutant
• Respiratory irritant, eye irritant, damages plants
Destruction of Atmospheric Ozone

• The group of molecules that are in this category are often referred to as ODS (Ozone Depleting Substances)

• Anthropogenic sources:
 – CFCs
 – Halocarbons/Halons
 • Used in fire retardants
 • Foam-blowing insulation

• 1 chlorine can destroy 100,000 ozone molecules
CFCs

- Chlorofluorocarbon
- Trademark name is Freon
- CFCs have stable structures which allow them to migrate through the troposphere
- They are broken down when exposed to strong UV radiation
- Used in
 - Refrigerants
 - Propellants/aerosols
 - Gas blown plastics (Styrofoam)
 - Pesticides
 - Flame retardants
Summary of CFC Reactions

$\text{CCl}_3\text{F} + \text{UV} \rightarrow \text{Cl} + \text{CCl}_2\text{F}$

$\text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2$

$\text{ClO} + 0 \rightarrow \text{Cl} + \text{O}_2$

Repeated many times
Video of Ozone Depletion

- https://www.youtube.com/watch?v=V7eDjqJ7vsY
Thinning ozone
Effects of Thinning Ozone Layer

Environmental Effects
• Greater UV radiation damages photosynthetic organisms (especially phytoplankton) decreasing primary productivity
• Sunburns animals
• Cataracts/blindness in animals

Human Health Effects
• Sunburn/skin cancer
• Cataracts (eye damage)
• Wrinkles
• Decreased immune response
Pollution Management

- Recycling refrigerants
- Finding alternatives to gas-blown plastics, halogenated pesticides, propellants and aerosols
- Developing non-propellant alternatives
Montreal Protocol

- International treaty to protect the ozone layer by phasing out materials believed to cause the depletion of stratospheric ozone
- Has been VERY successful. Ozone layer is showing signs of recovery
- Bans CFCs and halons
- Includes several groups of substances, all of them including chlorine or bromine.